苏教版平行四边形的面积教学设计
作为一位不辞辛劳的人民教师,总归要编写教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。那么问题来了,教学设计应该怎么写?以下是小编收集整理的苏教版平行四边形的面积教学设计,仅供参考,希望能够帮助到大家。
苏教版平行四边形的面积教学设计1一、教学内容:
平行四边形的面积(一)。
二、教学目标
1.使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2.使学生通过操作、观察、比较等活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
3.培养学生初步的逻辑思维能力及空间概念,激发学生的创造意识和探究精神。
三、教学重难点
重点:推导平行四边形的面积计算公式
难点:会计算平行四边形的面积
四、教具学具
一个平行四边形纸片和一把手工剪刀,会移动的平行四边形教具,课件。
五、教学过程
(一)、激趣导入
投影出示北关小学图片(大门、门后、教学楼、西楼等),说说你发现了哪此图形,你会计算它们的面积吗?
学生回答出长方形、正方形、圆形、三角形等,并说出才长方形和正方形的面积计算公式,老师拿出平行那个四边形卡片,让学生说出图形,然后老师又问:“那么平行四边形的面积该如何计算呢?它和哪些因素有关呢?
带着这个疑问,老师给同学们讲了一个故事。《熊出没》里,吉吉国王给熊大和熊二各分了一块地,熊大是平行四边形的,熊二是长方形的。有一天熊二闲来无事,绕着两块地走了一圈,发现熊大的地需要200步,他的地需要180步,熊二不开心了,觉得熊大的地比较大,非要跟熊大换。那同学们,你们觉得着两块地哪块大呢?(引出问题)
生1:一样大。生2:熊大的大。
师:那今天我们就一起来探究这个新课题。板书:平行四边形的面积。
(二)教学实施
1、数方格
(1)师:我们在研究长方形面积的计算方法时用过数方格的方法来计算面积的大小。现在请同学也用同样的方法算出这个平行四边形的面积。(投影出示画着长方形和平行四边形的方格纸说明:每一个方格表示1cm2,不满一格的都按半格计算。请同学们数出数据,并填在教材第87页的表中。
(2)比较。
提问:观察表格中的数据,你发现了什么?
平行四边形底高面积
6cm4cm24cm2
长方形长宽面积
6cm4cm24cm2
同桌相互讨论,得出结论:平行四边形和长方形的底与长、高与宽及面积分别相等,这个平行四边形的面积等于它的底乘高,这个长方形的面积等于它的长乘宽。
(3)小结
从上面的研究我们知道,平行四边形的面积也可以用数方格的方法求出来,但数起来比较麻烦,而且不能算得精确。特别是较大的平行四边形,像一块平行四边形菜地的面积,用数方格的方法就不好数了。因此我们也要像求长方形面积那样,找出平行四边形的面积计算公式。
2.通过动手操作,推导平行四边形面积的计算公式。
(1)用数方格的方法我们已经发现平行四边形的面积等于底乘高。那么,是不是所有的平行四边形都可以用这种方法求面积呢?下面就以小组为单位研究一下。我们已经会计算长方形的面积了,能不能把一个平行四边形转化成一个长方形呢?想一想该怎么做。拿出准备好的平行四边形进行剪拼。
(2)请学生到实物投影前演示自己剪拼的过程。教师用投影演示“剪一平移一拼”的过程。
(3)引导学生比较。(黑板上贴出剪拼成的长方形和原来的平行四边形)
①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?
②这个长方形的长与平行四边形的底有什么关系?
③这个长方形的宽与平行四边形的高有什么关系?
小组讨论后,请代表汇报,教师归纳并板书:
长方形的面积=长X宽
平行四边形的面积=底x高
(3).教师指出用S表示平行四边形的面积,用a表示平行四边形的底,h表示平行四边形的高,请同学们用字母表示平行四边形的面积。
板书:S=ah
师:平行四边形的高有很多条,还有的是不同方向,是不是底乘任意高就是平行四边形的面积呢?
生:不是。底必须乘和它对应的高,才是平行四边形的面积。
出示图片
生通过观察得出:同(等)底等高的平行四边形面积相等。
师:回忆一下,刚才我们是怎样一步一步地研究推导出平行四边形面积的计算公式的?学生回答,教师出示结论。
(4)运用平行四边形的面积公式解决教材第88页例1。
师:从题中找出平行四边形的面积所需的各个量。
根据字母公式:S=ah,将底是6m,高是4m,直接代入公式即可求解。
学生口述,教师板书。
S=ah......先写字母代入公式=6×4......代入数求值=24(m2)......加单位名称
答:平行四边形花坛的面积是24m2。
六、巩固提高
1、填空题,让学生可以灵活运用新知,巩固加强记忆。
(1)把一个长方形木框拉成一个平行四边形,()不变,它的高和面积()。(2)()。
学生利用老师发的可移动的平行四边形教具进行操作得出结论。
2、计算平行四边形面积。
有两种方法进行计算,体验平行四边形的面积是底乘对应的高。
七、课堂小结
八、课后作业
1.从课本第89页练习十九中选取;
2.完成练习册本课时的习题。
九、课后反思
本节课教学我充分让学生自己参与学习,让学生数方格、剪拼,引导学生参与学习全过程,去主动探求知识,强化学生参与意识,我引导学生运用实验割补法把平行四边形转化为长方形,从而找到平行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长×宽,得到平行四边形面积计算公式是底×高,利用讨论交流等形式要求学生把自己操作——转化——推导的过程叙述出来,以发展学生思维和表达能力。这样教学对于培养学生的空间观念,发展解决生活中实际问题的能力都有重要作用。
十、板书
平行四边形的面积
如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,平行四边形的面积计算公式可以写成:S=ah。
苏教版平行 ……此处隐藏19646个字……转化成长方形,面积变了吗?(2)方形后的长和宽分别与平行四边形的底和高有什么关系?
(3)能不能根据这些关系,总结出求平行四边形的面积的方法呢?
实物图片展示拼剪过程同时回答上面的讨论题。
学生一边说教师一边板书:长方形面积=长×宽
平行四边形面积=底×高(知识点)(能力点)
5、回顾公式推导过程
(1)结合课件演示各部分间的相等关系。
(2)指名说说平行四边形面积公式是怎么样推导出来的?
6、学习用字母表示公式。
师:如果平行四边形式形面积用字母s表示,底用a高用h表示,你能用字母表示平行四边形面积公式吗?(指名说说,师板书:s=ah)
7、记忆公式
闭上眼睛记记公式。
如果要求平行四边形的面积,必需要知道哪些条件呢?
8、尝试运用
师:我们发现的这个平行四边形面积的计算公式是不是对任何一个平行四边形都适用呢?请同学们用面积公式帮喜羊羊算一算平行四边形草地的面积,看计算结果与数方格方法求得的面积结果是不是一样?
(出示喜羊羊的草地图)(说明格式要求)学生独立完成。
三、深化运用,加深理解
通过计算,它们两人的草地面积相等吗?(相等)它们终于消除了误会,破涕为笑,齐声说:“计算平行四边形面积原来这么简单,我们也会了。”
1、算出下列平行四边形的面积(考查点)
课件出示图形
(羊村长看到小羊们的进步很高兴,说:“再出几个选择题考考你们吧。”)
2、选一选。(题目见课件)(考查点、能力点)
(强调:平行四边形的面积=底×底边对应的高)
你有什么结论?(等底等高的两个平行四边形面积相等。)
3、(羊村长说:我老了,你们能帮我算需要多少棵白菜秧苗吗?)
(考查点、能力点)
有一块地近似平行四边形,底是15米,高是10米。这块地的面积约是多少平方米?如果每平方米种8棵白菜,这块地能种多少棵白菜?
四、解决问题,应用拓展
1、小小设计师:
羊村小学教学楼前要建造一个面积是24平方米的平行四边形花坛,请你帮它们设计一下(要求它的底和高均为整米数),可以有几种方案?
2、喜羊羊准备在草地的四周围上篱笆,你能帮它算算篱笆长多少米吗?
五、总结全课,提高认识
这节课我们学习了什么知识?是怎么来学会这些知识的?
苏教版平行四边形的面积教学设计14一、教学目标:
1、知识目标:经历动手操作、讨论、归纳等探讨平行四边形面积公式,并能用字母表示,会用公式计算平行四边形面积。
2、能力目标:在剪一剪、拼一拼中发展空间观念;在想一想、看一看中初步感知“转化”的数学思想和方法。
3、过程与方法:通过观察、操作、测量、思考、讨论交流、小组合作等数学活动,体会转化等数学方法,发展推理能力。
4、情感态度与价值观:使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感。
二、教学重点、难点及关键点剖析:
1、重点:平行四边形面积公式的推导及应用。
2、难点:理解平行四边形面积计算公式的推导过程。
三、教具、学具准备:
平行四边形纸片、剪刀及电脑课件、
四、教学过程:
一、创设情境,导入新课
猪八戒和孙悟空西天取经回来后,就回到高老庄种起地来,可是孙悟空的地在猪八戒家的旁边,猪八戒的地却在孙悟空家的旁边,它们都觉得干活时很不方便。于是它们商量把地换一下。可是孙悟空的菜地是长方形的,猪八戒的菜地是平行四边形的,它们都在想这样交换公平吗?同学们,你们说这样交换公平吗?我们怎样才能知道这样交换是否公平呢?
生:算出这两块地的面积,比比就知道了。
师:那长方形的面积怎么算呢?
生:长方形的面积=长×宽
师:平行四边形的面积怎么算呢?
生摇摇头。
师:那你们想学吗?这节课我们就一起来研究平行四边形的面积。(板书课题)
齐读学习目标:
1、通过操作,能推导出平行四边形的面积计算公式。
2、会运用平行四边形的面积计算公式解决实际问题。
二、自主学习
在下面的方格纸上数一数,然后填写下表。(一个方格代表1m2,不满一格的都按半格计算。)
小组讨论:
(1)仔细观察、比较表格中的数据,你发现了
(2)猜想:平行四边形的面积=_________________________
三、动手操作,验证猜想
(1)小组讨论:能不能将平行四边形转化成长方形来计算?该怎样转化?(把平行四边形转化成长方形或正方形,必需沿着平行四边形的高剪)
(2)以小组为单位进行剪拼。
(3)指学生演示平行四边形转化成长方形的过程,并观看电脑演示过程。
(4)讨论:
A、平行四边形转化成长方形后面积变了吗?为什么?(没有,因为它的大小没变),(物体的表面或封闭图形的大小,叫做它们的面积)
B、转化成的长方形的长相当于原平行四边形的(),转化成的长方形的相当于原平行四边形的()。
(5)交流汇报
板书:长方形的面积=长×宽
↓↓↓
平行四边形的面积=底×高
师:如果用字母S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成S=a×h,也可以写成S=ah或S=ah(师板书)
四、当堂检测
1、师:通过同学们的努力,我们已经推导出了平行四边形面积的计算公式,那现在你们会利用公式解决问题了吗?
出示例1平行四边形花坛的底是6m,高是4m,它的面积是多少?
学生独立完成,并展示学生作业。
2、计算下面平行四边形面积,列式正确的是:()
A:8×3
B:8×6
C:4×6
D:4×3
通过做此题,你想提醒大家注意什么?
3、你能想办法求出下面这个平行四边形的面积吗?
五、拓展提升
下面图中两个平行四边形的面积相等吗?它们的面积各是多少?
1.4cm
2.5cm
通过做此题,你发现了什么?
六、课堂小结
说说本节课,你收获了什么?
七、板书设计:
平行四边形的面积
长方形的面积=长×宽
↓↓↓
平行四边形的面积=底×高
S=a×h
=ah
=ah