运算律教学反思

时间:2024-05-13 13:53:23
运算律教学反思15篇

运算律教学反思15篇

身为一名到岗不久的老师,教学是重要的任务之一,通过教学反思可以快速积累我们的教学经验,那么写教学反思需要注意哪些问题呢?下面是小编为大家收集的运算律教学反思,欢迎阅读,希望大家能够喜欢。

运算律教学反思1

本节课学生有着丰富的学习经验,学生对整数、小数四则混合运算的运算顺序已经比较熟悉了,本册也已经教学了分数加、减法和分数乘、除法等基础的两步的混合运算题。在此基础上学习探究稍复杂的分数四则混合运算,教材没有再详细说明运算顺序,而是引导学生通过解决问题,加以分析感悟,整数四则混合运算的相关知识同样适用于分数,本节课是借助解决问题挖掘学习计算方法,重在引导学生明确分数四则混合运算的运算顺序和相关运算律的应用。本课时在设计上分了三层:

第一:导入环节,通过一个问题,梳理有关整数和小数的运算顺序和运算律的知识,帮助学生构建知识体系,唤起学生对这些已有的知识的回顾,为学习新知识做准备。然后,让学生猜测,我们学过的运算性质对于分数四则混合运算适用吗?这样引起学生的兴趣,激发好奇心。

第二:探究环节,是在教师的引导下,学生从已有的知识出发,经过自己的思考,主动探索,合作交流获取新知识,让学生感悟知识间的内在联系。通过让学生自主解决问题,分析、观察特点,找出算式中的共性特点,借助前面的知识进行迁移,小组汇报时,充分说明计算的依据,学生在探究过程中有对前面知识进行思考与归纳,将学习方法进一步归纳整合,使学生进一步感知整数的运算顺序和运算律同样适用于分数的四则混合运算。

第三:总结部分,又让学生回扣前面的知识,将整数、小数、分数的整个知识体系进行沟通,帮助学生架构起知识之间的关系。

这节课上完后,我认为基本达到了我的预期目标,学生对知识掌握的比较扎实,但也有需要改进的地方。一、本节课是围绕着我国世界文化遗产为主题,展开问题的发现、探究与解答。因此在对学生进行悠久文化历史的熏陶上做的不到位,要让学生在增加课外知识的过程中产生对身为中国人的自豪感,同时激发了学生的学习兴趣。二、学生自主探索后练习的时间有些紧张,运算定律简便计算题没有进行练习,练习的题目多样性不够。如果能在这两个方面进行改进,学生学习的效率还会有所提高。更好的渗透了数学学习方法,发展了学生的抽象概括能力和初步的演绎推理能力。

注:本节课我和搭档池老师先进行了股份认备课,后相互听课进行集体研讨,我们一致认为沟通知识间的前后联系非常必要,而本节课也主要是借助学生的已有知识经验来解决问题,所以我们在解决问题的过程中都让学生充分感知整数、小数、分数四则混合运算中相关知识间的联系与不同点。在本节课的分数四则混合运算顺序与运算律的推广过程中,池老师借助了整数与小数、分数互化,搭建他们之间的联系,让学生顺理成章的进行推理使用。而我在这里又让学生进行进一步的举例验证,感知他们的应用,看似有些难度,但学生恰是在这样的证明活动中加以推理和掌握知识。我们一起备课、听课,相互提意见,说想法,不在乎是否比赛,只享受这样一次研讨成长的过程。

运算律教学反思2

简便运算是一种高级的混合运算,是混合运算的技巧,学好了简便运算,不仅能提高计算能力、计算速度及正确率,还能使复杂的计算变得简单,也就是变难为易,变繁为简,变慢为快。同时能灵活、合理地运用各种定律、性质、法则等达到融会贯通的境界,是计算题中最能锻炼学生思维能力、开拓学生思路的一种题型。所以,在计算题教学中应重视简便运算,注重简便运算灵活思路的学习,合理地进行简便运算,使学生的思维能力得到提高。五年级的简便运算的教学建立在学生已有对简便运算的认识上。小数乘法简便运算是整数乘法简便运算的延伸。

这节课我以学生先试后导,先练后讲为主线进行设计,突出学生的主体地位,发挥学生知识迁移能力。学生在整体认知小数乘法简便运算的运算律方面较容易,在计算过程中不少学生忽略了小数点的移动,有以下几点值得反思。

一、复习题的设计针对性强,为新课学习做好铺垫。

做好已有知识结构的迁移。在复习时先请两名学生到黑板上做:25×12和 87×46+ 54×87 ,同时其他同学集体练习。指名说说自己是怎样想的,提示学生运用的是哪一个乘法运算定律,实际有学生说第二题用的是乘法结合律,我并没有急于否定学生的答案,而是问学生乘法结合律的字母表达式和乘法分配率的字母表达式,并组织学生进行区别,以便更好的运用这两个定律解题。通过复习使每一个学生进一步明确乘法的运算定律及它们之间的联系与区别,更加清楚如何运用运算定律解题。同时渗透并思考,这些运算定律在小数乘法中能不能用,激发学生对小数乘法的简便运算的猜想和求知的欲望。

二、新课学习先试后导,善用旧知解疑。

教师出示例题4后,简单分析题意,学生用自己的方法解题。

0.8×1.3○1.3×0.8

(0.9×0.4)×0.5○0.9×(0.4×0.5 )

(3.2+2.8)×0.6○3.2×0.6+2.8×0.6

有学生通过计算两边的算式结果来判断,大多数学生看见算式联想到简便运算来判断,第一种算法确定算式两边结果相等,第二种算法提供了学生思维判断的方法。这样有效地把整数乘法的运算律和小数乘法结合起来,运算方法在小数乘法中一样有效。

为了学生更好地运用运算律,安排了三题练习题

0.25×0.7×4、 1.25×2.4 3.2×1.02

保留了教材中试一试第一题,修改了第二题,增加了第三题题,第一题让学生理解乘法交换律,第二题运用乘法交换律和结合律,第三题是运用乘法分配律。第二题中2.4的分解是教学时一个难点,不少学生着重把24分解成8×4,忽略了小数点,这个环节的处理不够好,未能预料。第三题的教学也是一个难点,不少学生意识不到把1.02分解成1+0.02,只是一味去分解3.2。

三、巩固练习类型多样,提高学生能力。

巩固练习的设计除了根据运算定律填空外,还设计了各种类型的简算题,如:12.5×4.8 0.72×101 3.8×9.9 1.01×2.6 0.25×0.125× 0.4×0.8 0.4×8.2×25-0.3

这些题里有的接近整数、有的超过整数、有的要先转化再做,有的运用乘法结合律做,有的运用乘法分配律做,有的是部分简算,几乎涵盖了所有小数乘法简算的各种类型 ,另外还出现了部分简算的题,这样的题学生掌握的不好, 关键是根据运算定律判断是否能简算。最后是拓展提高,3.67×8.9 + 36.7×0.11 86.9×1.73 + 8.69×7.3 这两道题分别都有两种解法,学生根据刚才做题的经验,分析后很快发现36.7和3.67 、86.9和8.69可以互相转化,怎样才能使转化后的数的积不变,利 ……此处隐藏9211个字……认识,这是学习加法运算律的基础。在这节课中,我有意识地让学生运用已有的经验,经历运算律的发现过程,让学生在“观察、发现、猜想、验证、得出结论”的数学学习方法中学会学习。一节课下来,自我感觉做得较成功的有以下几点:

  一、联系生活实际,激发求知。

小学生学习数学的积极性一定程度上取决于他们对学习素材的兴趣,现实的问题情境、有趣的数学游戏容易激发他们学习的欲望。所以上课伊始,我以学生身边熟悉的:跳绳、踢毽子为教学的切入点,激发学生主动学习数学的需要,为学生进行教学活动创设了良好的氛围。先让学生观察情境图,从图上获得哪些信息?根据这些信息你可以提出什么问题?这样的导入既吸引了学生注意力,又培养了学生的问题意识。学生能马上提出一些问题,为后面的探究学习做好了铺垫。通过情境,组织学生认真观察,分析根据提供的信息来选择所提问题有联系的条件进行分析、计算,使学生经历加法运算律产生和形成的过程。

  二、注重策略方法,指导自主学习。

数学课程标准指出:最有价值的知识是关于方法的知识,“授之以鱼不如授之以渔”。从一开始学习加法交换律时,让学生通过参与学习活动得出观察、发现、猜想、验证、结论这一学习方法。并应用这一方法去学习加法结合律。让学生在合作与交流中去探究加法的结合律,合理地构建知识。学生掌握了学习方法就等于拿到了打开知识宝库的金钥匙。在教学时,我注意了以下几方面的问题:一是在猜测中产生举例验证的心理需求。在学生根据问题情境得28+17=45、17+28=45之后,学生通过观察发现交换两个加数的位置,和相等。我适时提出这样的猜想:“是不是任意两个加数交换位置,和都相等呢?”学生不敢肯定,有了举例验证的内在需求。二是注意让学生在交流共享中充实学习材料,增强结论的可靠性。课上的时间有限,学生的独立举例是很有限的,我通过让学生同桌合作,共同举例,达到资源共享,丰富了学习材料和数学事实,知识的归纳顺理成章。三是鼓励学生用喜欢的方法表示规律。学生思维的浪花又一次激起,有的用图形表示:△+○=○+△,有的用文字表示:甲数+乙数=乙数+甲数,也有的用字母表示:a+b=b+a。这样的思维方式既是对加法交换律的概括与提升,又能发展符号感。

  三、及时评价、鼓励。

在课堂上我及时评价总结,肯定学生在学习过程中的点滴进步,捕捉学生在探索过程中的闪光点。学习内容的理解也提升到一个更高的层面。

当然,一节课下来也有不少遗憾。在课堂教学中,我没有准确把握好每一个孩子,驾驭课堂的能力还不够。整节课,由于新授部份花的时间较多,显得有些拖沓,有些细节引导还不是很到位,还需要加强,但在以后的教学中我会不断地挖掘,不断学习。

运算律教学反思13

学生对于加法和乘法的交换律掌握较好,基本能够灵活运用。然而对于加法、乘法结合律则运用不是很好,乘法分配律则更为糟糕。

归结有以下几个原因:第一,学生现在只是能够认识,弄明白这三个运算定律,还不明白这几个运算定律的作用和意义。(除了少部分思维敏捷的学生之外)。第二,学生能正确的分析算式,并正确的运用运算定律,对学生的已有基础提出了不少的考验,如 42 X 25 ,运用运算定律计算这个算式,很生很多是把 25 分为 20 和 5 ,这样即使运用了乘法分配律,但较之把 42 分成 40 和 2 相比,有很大的出入。这主要是因为学生还没有完全形成 25X4 得 100 这个重要的因素造成的。这里简单的描述为数学 “ 数感 ” 吧,还有 125 和 8 得 1000 一样。第三,有的学生甚至运用运算定律折腾了一番又回到了原来的算式。

综上所述,解决办法只能是多讲多练,不断的培养学生的数感,在不断的重复练习过程中,体会应该如何运用运算定律,也就是如何做题。其次,等待讲解了下节内容简便运算之后,我想学生会得到一个明确的回答,原来在计算的过程中运用运算定律可以使运算过程变得简单,这样,学生在计算的时候,自然就会去运用了,而且会十分的感兴趣。

运算律教学反思14

近日,学校组织了《同课异构》的同讲一堂课活动,参与其中,汲取其他教师的优点,弥补自身的不足,对于提升自身的业务水平和综合素质有了很大的帮助,受益匪浅。

回顾教学《分数四则混合运算》的课堂过程,我通过创设情境,欣赏世界文化遗产,感受灿烂的中国文明,调动学生积极性,主动性,再出示情境图,教师根据问题的不同,有的直接口答,有的相应板书,有的放入问题口袋。然后让学生在解决问题的过程中,感受分数四则混合运算的顺序与整数相同,学生只是感受,明白,可是做题时也会因运算顺序而出错。所以这节课的重中之重放到了练习的设计上,要设计出层次和深度。

首先,我出示了三道基本练习题:1+ × 1+ × ÷× ÷(—),这三道题目涵盖了三种类型,一种是四则混合运算,一种是同级运算,一种是带括号的运算。让学生练习并巩固运算顺序,在1+ ×这道题目中,还要注意结果写成2,而不是写成1,接着,我出示了一道有三种运算符号的混合运算+÷×,先让学生说运算顺序,再计算。然后,我设计了“添加小括号”的数学活动,学生思维活跃,变换出四种不同算式,然后我分四个小组分别做,一组一个代表板演,作完后,学生代表检查,订正,体验运算顺序不同,结果不同,所以运算顺序很重要。然后,我又出示了两道易出错的题:,×÷×,+—+,学生板演,仍有个别学生对数的特殊性任意加括号,从而改变了原题的运算顺序,导致出错,另外,在计算中,也有学生能够正确运用在同级运算中,可以“带符号搬家”的性质,使计算更加简便。

回过整个教学过程,随着习题的难度增大,调动学生的思维一步一步地向前发展,愈来愈多地需要运用已学过的知识。与此同时,讲练结合紧密结合,学生思维也十分活跃。学生能力逐步提高,学生知识的获得也比较扎实,牢固,灵活。

运算律教学反思15

《运算律》这节课在前测部分有效地进行了知识点的回顾,在学生小卡独立完成的基础上进行同桌2人组的交互,进行第一次思维扩张,在此基础上随即检测,手势表决,并指明汇报,有效地做到了五防。

在中测部分出示多向度平台,学生自由选择1+3个向度自主学习,体现了学习的自由度,使学生得到不同的需求发展。在交互强化环节,学生8人单元组传阅,批改学习卡,讲解纠错,汇集学习成果,汇报质疑补充,充分发挥了人力资源,做到人人有事做,攀升了强化次数,解决了大容量的学习任务,锻炼了学习能力,提升了学习的自信心。

在后测部分学生积极主动检测,有效展示学习效果。再次攀升了强化次数,提高了学习效果。

本节课不足之处在于多向度选择中,学生习惯于从前到后,由浅及深,导致有难度的题目做的人少,或学生没时间完成,今后在这方面鼓励学生基础题跳跃完成,预留大量时间挑战有难度的题目,在完成难题的基础之上再回头完成剩余基础题。

由于时间紧迫,在后侧环节有些仓促,留给学生的学习时间不够,主要是汇报环节学生占用时间过大,调控时间不够得力,今后加以训练和改正。

以上是我的教学反思,不到之处,敬请指正。

《运算律教学反思15篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式